3.3 Trigonometric Substitution
Learning Objectives
- Solve integration problems involving the square root of a sum or difference of two squares.
In this section, we explore integrals containing expressions of the form
and
where the values of
are positive. We have already encountered and evaluated integrals containing some expressions of this type, but many still remain inaccessible. The technique of trigonometric substitution comes in very handy when evaluating these integrals. This technique uses substitution to rewrite these integrals as trigonometric integrals.
Integrals Involving 
Before developing a general strategy for integrals containing consider the integral
This integral cannot be evaluated using any of the techniques we have discussed so far. However, if we make the substitution
where
, we have
After substituting into the integral, we get
After simplifying, we have
Because we obtain
Since , we have that
and so
which implies
At this point, we can evaluate the integral using the techniques developed for integrating powers of products of trigonometric functions. Before completing this example, let’s take a look at the general theory behind this idea.
To evaluate integrals involving we make the substitution
and then
Let’s see why this actually makes sense. The domain of
is
Thus,
Consequently,
Since the range of
over
is
there is a unique angle
satisfying
so that
or equivalently, so that
If we substitute
into
we get
Since on
and
From this discussion, we can see that by making the substitution
we are able to convert an integral involving a radical into an integral involving trigonometric functions. After we evaluate the integral, we can convert the solution back to an expression involving
To see how to do this, let’s begin by assuming that
In this case,
Since
we can draw the reference triangle to assist in expressing the values of
and the remaining trigonometric functions in terms of
It can be shown that this triangle actually produces the correct values of the trigonometric functions evaluated at
for all
satisfying
It is useful to observe that the expression
actually appears as the length of one side of the triangle. Last, should
appear by itself, we use



The essential part of this discussion is summarized in the following problem-solving strategy.
Problem-Solving Strategy: Integrating Expressions Involving 
- It is a good idea to make sure the integral cannot be evaluated easily in another way. For example, although this method can be applied to integrals of the form
and
they can each be integrated directly by a simple substitution.
- Make the substitution
and
Note: This substitution yields - Simplify the expression.
- Evaluate the integral using techniques from the section on trigonometric integrals.
- Use the reference triangle from Figure 1 to rewrite the result in terms of
You may also need to use some trigonometric identities and the relationship
The following example demonstrates the application of this problem-solving strategy.
Integrating an Expression Involving 
Evaluate
Solution
Begin by making the substitutions and
Since
we can construct the reference triangle shown in the following figure.

Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill \ds{\int }^{\text{}}\sqrt{4-{x}^{2}}\phantom{\rule{0.1em}{0ex}}\,dx &\ds ={\int }^{\text{}}\sqrt{4-{\left(2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \right)}^{2}}\,2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}x=2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}\,dx =2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta .\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}\sqrt{4\left(1-{\text{sin}}^{2}(\theta) \right)}\,2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Simplify.}\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}\sqrt{4\phantom{\rule{0.1em}{0ex}}{\text{cos}}^{2}(\theta) }2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Use the identity}\phantom{\rule{0.2em}{0ex}}{\text{cos}}^{2}(\theta) =1-{\text{sin}}^{2}(\theta) .\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}2|\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) |2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Take the square root.}\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}4\phantom{\rule{0.1em}{0ex}}{\text{cos}}^{2}(\theta) d\theta \hfill &\ds &\ds &\ds \begin{array}{l}\text{Simplify. Since}\phantom{\rule{0.2em}{0ex}}-\frac{\pi }{2}\le \theta \le \frac{\pi }{2},\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) \ge 0\phantom{\rule{0.2em}{0ex}}\text{and}\hfill \\[5mm]\ds |\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) |=\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) .\hfill \end{array}\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}4\left(\frac{1}{2}+\frac{1}{2}\text{cos}\left(2\theta \right)\right)d\theta \hfill &\ds &\ds &\ds \begin{array}{l}\text{Use the strategy for integrating an even power}\hfill \\[5mm]\ds \text{of}\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) .\hfill \end{array}\hfill \\[5mm]\ds &\ds =2\theta +\text{sin}\left(2\theta \right)+C\hfill &\ds &\ds &\ds \text{Evaluate the integral.}\hfill \\[5mm]\ds &\ds =2\theta +\left(2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) \right)+C\hfill &\ds &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}\text{sin}\left(2\theta \right)=2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) .\hfill \\[5mm]\ds &\ds =2{\text{sin}}^{-1}\left(\frac{x}{2}\right)+2\cdot \frac{x}{2}\cdot \frac{\sqrt{4-{x}^{2}}}{2}+C\hfill &\ds &\ds &\ds \begin{array}{l}\text{Substitute}\phantom{\rule{0.2em}{0ex}}{\text{sin}}^{-1}\left(\frac{x}{2}\right)=\theta \phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) =\frac{x}{2}.\phantom{\rule{0.2em}{0ex}}\text{Use}\hfill \\[5mm]\ds \text{the reference triangle to see that}\hfill \\[5mm]\ds \text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) =\frac{\sqrt{4-{x}^{2}}}{2}\phantom{\rule{0.2em}{0ex}}\text{and make this substitution.}\hfill \end{array}\hfill \\[5mm]\ds &\ds =2{\text{sin}}^{-1}\left(\frac{x}{2}\right)+\frac{x\sqrt{4-{x}^{2}}}{2}+C.\hfill &\ds &\ds &\ds \text{Simplify.}\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-a843a824a471a39431ceba412ae71f53_l3.png)
Integrating an Expression Involving 
Evaluate
Solution
First make the substitutions and
Since
we can construct the reference triangle shown in Figure 3 below.

Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill \ds\int \frac{\sqrt{4-{x}^{2}}}{x}\,dx &\ds =\int \frac{\sqrt{4-{\left(2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \right)}^{2}}}{2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) }2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}x=2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}dx=2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta .\hfill \\[5mm]\ds &\ds =\int \frac{2\phantom{\rule{0.1em}{0ex}}{\text{cos}}^{2}(\theta) }{\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) }d\theta \hfill &\ds &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}} 1-{\text{sin}}^{2}(\theta)={\text{cos}}^{2}(\theta) \phantom{\rule{0.2em}{0ex}}\text{and simplify.}\hfill \\[5mm]\ds &\ds =\int \frac{2\left(1-{\text{sin}}^{2}(\theta) \right)}{\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) }d\theta \hfill &\ds &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}{\text{cos}}^{2}(\theta) =1-{\text{sin}}^{2}(\theta) .\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}\left(2\phantom{\rule{0.1em}{0ex}}\text{csc}\phantom{\rule{0.1em}{0ex}}(\theta) -2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) \right)d\theta \hfill &\ds &\ds &\ds \begin{array}{c}\text{Separate the numerator, simplify, and use}\hfill \\[5mm]\ds \text{csc}\phantom{\rule{0.1em}{0ex}}(\theta) =\frac{1}{\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) }.\hfill \end{array}\hfill \\[5mm]\ds &\ds =2\phantom{\rule{0.1em}{0ex}}\text{ln}|\text{csc}\phantom{\rule{0.1em}{0ex}}(\theta) -\text{cot}\phantom{\rule{0.1em}{0ex}}(\theta) |+2\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) +C\hfill &\ds &\ds &\ds \text{Evaluate the integral.}\hfill \\[5mm]\ds &\ds =2\phantom{\rule{0.1em}{0ex}}\text{ln}\left|\frac{2}{x}-\frac{\sqrt{4-{x}^{2}}}{x}\right|+\sqrt{4-{x}^{2}}+C.\hfill &\ds &\ds &\ds \begin{array}{c}\text{Use the reference triangle to rewrite the}\hfill \\[5mm]\ds \text{expression in terms of}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{and simplify.}\hfill \end{array}\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-a55bf345ac935361644cd5fcacc8fded_l3.png)
In the next example, we see that we sometimes have a choice of methods.
Integrating an Expression Involving
Two Ways
Evaluate two ways: first by using the substitution
and then by using a trigonometric substitution.
Solution
Method 1
Let and hence
Thus,
In this case, the integral becomes
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill {\int }^{\text{}}{x}^{3}\sqrt{1-{x}^{2}}\phantom{\rule{0.1em}{0ex}}\,dx &\ds =-\frac{1}{2}{\int }^{\text{}}{x}^{2}\sqrt{1-{x}^{2}}\left(-2x\phantom{\rule{0.1em}{0ex}}\,dx \right)\hfill &\ds &\ds &\ds \text{Make the substitution.}\hfill \\[5mm]\ds &\ds =-\frac{1}{2}{\int }^{\text{}}\left(1-u\right)\sqrt{u}\phantom{\rule{0.1em}{0ex}}du\hfill &\ds &\ds &\ds \text{Expand the expression.}\hfill \\[5mm]\ds &\ds =-\frac{1}{2}\int \left({u}^{1\text{/}2}-{u}^{3\text{/}2}\right)du\hfill &\ds &\ds &\ds \text{Evaluate the integral.}\hfill \\[5mm]\ds &\ds =-\frac{1}{2}\left(\frac{2}{3}{u}^{3\text{/}2}-\frac{2}{5}{u}^{5\text{/}2}\right)+C\hfill &\ds &\ds &\ds \text{Rewrite in terms of}\phantom{\rule{0.2em}{0ex}}(x).\hfill \\[5mm]\ds &\ds =-\frac{1}{3}{\left(1-{x}^{2}\right)}^{3\text{/}2}+\frac{1}{5}{\left(1-{x}^{2}\right)}^{5\text{/}2}+C.\hfill &\ds &\ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-5992bead8ee7182c1a04eac0e5e942cf_l3.png)
Method 2
Let In this case,
Using this substitution, we have
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill {\int }^{\text{}}{x}^{3}\sqrt{1-{x}^{2}}\phantom{\rule{0.1em}{0ex}}\,dx &\ds ={\int }^{\text{}}{\text{sin}}^{3}(\theta) \phantom{\rule{0.1em}{0ex}}{\text{cos}}^{2}(\theta) d\theta \hfill &\ds &\ds &\ds \hfill\\[5mm]\ds &\ds ={\int }^{\text{}}\left(1-{\text{cos}}^{2}(\theta) \right){\text{cos}}^{2}(\theta) \phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Let}\phantom{\rule{0.2em}{0ex}}u=\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) .\phantom{\rule{0.2em}{0ex}}\text{Thus,}\phantom{\rule{0.2em}{0ex}}du= - \text{sin}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta.\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}\left({u}^{4}-{u}^{2}\right)du\hfill &\ds &\ds &\ds \\[5mm]\ds &\ds =\frac{1}{5}{u}^{5}-\frac{1}{3}{u}^{3}+C\hfill &\ds &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}u=\text{cos}\phantom{\rule{0.1em}{0ex}}(\theta).\hfill \\[5mm]\ds &\ds =\frac{1}{5}{\text{cos}}^{5}(\theta) -\frac{1}{3}{\text{cos}}^{3}(\theta) +C\hfill &\ds &\ds &\ds \begin{array}{c}\text{Use a reference triangle to see that}\hfill \\[5mm]\ds \text{cos}\phantom{\rule{0.1em}{0ex}}(\theta) =\sqrt{1-{x}^{2}}.\hfill \end{array}\hfill \\[5mm]\ds &\ds =\frac{1}{5}{\left(1-{x}^{2}\right)}^{5\text{/}2}-\frac{1}{3}{\left(1-{x}^{2}\right)}^{3\text{/}2}+C.\hfill &\ds &\ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-b8de981a42dd24448f12b0b32eb0b48c_l3.png)
Rewrite the integral using the appropriate trigonometric substitution (do not evaluate the integral).
Answer
Hint
Substitute and
Integrating Expressions Involving 
For integrals containing let’s first consider the domain of this expression. Since
is defined for all real values of
we restrict our choice to those trigonometric functions that have a range of all real numbers. Thus, our choice is restricted to selecting either
or
Either of these substitutions would actually work, but the standard substitution is
or, equivalently,
With this substitution, we make the assumption that
so that we also have
The procedure for using this substitution is outlined in the following problem-solving strategy.
Problem-Solving Strategy: Integrating Expressions Involving 
- Check to see whether the integral can be evaluated easily by using another method. In some cases, it is more convenient to use an alternative method.
- Substitute
and
This substitution yields
(Sinceand
over this interval,
)
- Simplify the expression.
- Evaluate the integral using techniques from the section on trigonometric integrals.
- Use the reference triangle from to rewrite the result in terms of
You may also need to use some trigonometric identities and the relationship
(Note: The reference triangle is based on the assumption thathowever, the trigonometric ratios produced from the reference triangle are the same as the ratios for which



Integrating an Expression Involving 
Evaluate and check the solution by differentiating.
Solution
Begin with the substitution and
Since
draw the reference triangle in the following figure.

Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\ds\hfill \int \frac{\,dx }{\sqrt{1+{x}^{2}}}&\ds =\int \frac{{\text{sec}}^{2}(\theta) }{\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) }d\theta \hfill &\ds &\ds &\ds \begin{array}{c}\text{Substitute}\phantom{\rule{0.2em}{0ex}}x=\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}\,dx ={\text{sec}}^{2}(\theta) d\theta .\phantom{\rule{0.2em}{0ex}}\text{This}\hfill \\[5mm]\ds \text{substitution makes}\phantom{\rule{0.2em}{0ex}}\sqrt{1+{x}^{2}}=\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) .\phantom{\rule{0.2em}{0ex}}\text{Simplify.}\hfill \end{array}\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Evaluate the integral.}\hfill \\[5mm]\ds &\ds =\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) +\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) |+C\hfill &\ds &\ds &\ds \begin{array}{c}\text{Use the reference triangle to express the result}\hfill \\[5mm]\ds \text{in terms of}\phantom{\rule{0.2em}{0ex}}x.\hfill \end{array}\hfill \\[5mm]\ds &\ds =\text{ln}\left|\sqrt{1+{x}^{2}}+x\right|+C.\hfill &\ds &\ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-8b70fd61e7f4747984e1029012d563d2_l3.png)
To check the solution, differentiate:
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds \hfill \frac{d}{\,dx }\left(\text{ln}|\sqrt{1+{x}^{2}}+x|\right)&\ds =\frac{1}{\sqrt{1+{x}^{2}}+x}\cdot \left(\frac{x}{\sqrt{1+{x}^{2}}}+1\right)\hfill \\[5mm]\ds &\ds =\frac{1}{\sqrt{1+{x}^{2}}+x}\cdot \frac{x+\sqrt{1+{x}^{2}}}{\sqrt{1+{x}^{2}}}\hfill \\[5mm]\ds &\ds =\frac{1}{\sqrt{1+{x}^{2}}}.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-6ccb8914ea2110c24b607280f8654659_l3.png)
Since for all values of
we could rewrite
if desired.
Evaluating
Using a Different Substitution
Use the substitution to evaluate
Solution
Because has a range of all real numbers, and
we may also use the substitution
to evaluate this integral. In this case,
Consequently,
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill \ds\int \frac{\,dx }{\sqrt{1+{x}^{2}}}&\ds =\int \frac{\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) }{\sqrt{1+{\text{sinh}}^{2}(\theta) }}d\theta \hfill &\ds &\ds &\ds \begin{array}{c}\text{Substitute}\phantom{\rule{0.2em}{0ex}}x=\text{sinh}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}\,dx =\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta .\hfill \\[5mm]\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}1+{\text{sinh}}^{2}(\theta) ={\text{cosh}}^{2}(\theta) .\hfill \end{array}\hfill \\[5mm]\ds &\ds =\int \frac{\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) }{\sqrt{{\text{cosh}}^{2}(\theta) }}d\theta \hfill &\ds &\ds &\ds \sqrt{{\text{cosh}}^{2}(\theta) }=|\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) |\hfill \\[5mm]\ds &\ds =\int \frac{\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) }{|\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) |}d\theta \hfill &\ds &\ds &\ds |\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) |=\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.2em}{0ex}}\text{since}\phantom{\rule{0.2em}{0ex}}\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) \symbol{"3E}0\phantom{\rule{0.2em}{0ex}}\text{for all}\phantom{\rule{0.2em}{0ex}}(\theta) .\hfill \\[5mm]\ds &\ds =\int \frac{\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) }{\text{cosh}\phantom{\rule{0.1em}{0ex}}(\theta) }d\theta \hfill &\ds &\ds &\ds \text{Simplify.}\hfill \\[5mm]\ds &\ds ={\int }^{\text{}}1d\theta \hfill &\ds &\ds &\ds \text{Evaluate the integral.}\hfill \\[5mm]\ds &\ds =\theta +C\hfill &\ds &\ds &\ds \text{Since}\phantom{\rule{0.2em}{0ex}}x=\text{sinh}\phantom{\rule{0.1em}{0ex}}(\theta) ,\phantom{\rule{0.2em}{0ex}}\text{we know}\phantom{\rule{0.2em}{0ex}}(\theta) ={\text{sinh}}^{-1}(x).\hfill \\[5mm]\ds &\ds ={\text{sinh}}^{-1}(x)+C.\hfill &\ds &\ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-a3ee0841e4e2ea83292b3dd3eb8f22ec_l3.png)
Analysis
This answer looks quite different from the answer obtained using the substitution To see that the solutions are the same, set
Then
that is,
After multiplying both sides by and rewriting, this equation becomes:
Use the quadratic equation formula to solve for
Simplifying, we have:
Since it must be the case that
Therefore,
At last, we obtain
After we make the final observation that, since
we see that the two different methods produced the same solutions.
Finding an Arc Length
Find the length of the curve over the interval
Solution
Because the arc length is given by

To evaluate this integral, use the substitution and
We also need to change the limits of integration. If
then
and if
then
Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill \ds\int\limits_{0}^{1\text{/}2}\sqrt{1+4{x}^{2}}\phantom{\rule{0.1em}{0ex}}\,dx &\ds =\int\limits_{0}^{\pi \text{/}4}\sqrt{1+{\text{tan}}^{2}(\theta) }\,\frac{1}{2}{\text{sec}}^{2}(\theta) d\theta \hfill &\ds &\ds &\ds \begin{array}{c}\text{After substitution,}\hfill \\[5mm]\ds \sqrt{1+4{x}^{2}}=\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) .\phantom{\rule{0.2em}{0ex}}\text{Substitute}\hfill \\[5mm]\ds 1+{\text{tan}}^{2}(\theta) ={\text{sec}}^{2}(\theta) \phantom{\rule{0.2em}{0ex}}\text{and simplify.}\hfill \end{array}\hfill \\[5mm]\ds &\ds =\frac{1}{2}\int\limits_{0}^{\pi \text{/}4}{\text{sec}}^{3}(\theta) d\theta \hfill &\ds &\ds &\ds \begin{array}{c}\text{We derived this integral in the}\hfill \\[5mm]\ds \text{previous section.}\hfill \end{array}\hfill \\[5mm]\ds &\ds =\frac{1}{2}\left(\frac{1}{2}\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) +\frac12\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) +\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) |\right)\Big|_0^{\pi\text{/}4}\hfill &\ds &\ds &\ds \text{Evaluate and simplify.}\hfill \\[5mm]\ds &\ds =\frac{1}{4}\left(\sqrt{2}+\text{ln}\left(\sqrt{2}+1\right)\right).\hfill &\ds &\ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-8fd4036bfdbfbc9bb6d180d996a98864_l3.png)
Rewrite by using a substitution involving
Answer
Hint
Use and
Integrating Expressions Involving 
The domain of the expression is
Thus, either
or
Hence,
or
Since these intervals correspond to the range of
on the set
it makes sense to use the substitution
or, equivalently,
where
or
The corresponding substitution for
is
The procedure for using this substitution is outlined in the following problem-solving strategy.
Problem-Solving Strategy: Integrals Involving 
- Check to see whether the integral cannot be evaluated using another method. If so, we may wish to consider applying an alternative technique.
- Substitute
and
This substitution yields
Forwe have
, which implies that
, and so
while for
, implying that
, and hence
- Simplify the expression.
- Evaluate the integral using techniques from the section on trigonometric integrals.
- Use the reference triangles to rewrite the result in terms of
You may also need to use some trigonometric identities and the relationship
(Note: We need both reference triangles, since the values of some of the trigonometric ratios are different depending on whetheror
)



Finding the Area of a Region
Find the area of the region between the graph of and the x-axis over the interval
Solution
First, sketch a rough graph of the region described in the problem, as shown in the following figure.

We can see that the area is To evaluate this definite integral, substitute
and
We must also change the limits of integration. If
then
and hence
If
then
After making these substitutions and simplifying, we have
![Rendered by QuickLaTeX.com \ds \begin{array}{ccccc}\hfill \text{Area}&\ds =\int\limits_{3}^{5}\sqrt{{x}^{2}-9}\phantom{\rule{0.1em}{0ex}}\,dx \hfill &\ds &\ds &\ds \\[5mm]\ds &\ds =\int\limits_{0}^{{\text{sec}}^{-1}\left(5\text{/}3\right)}9\phantom{\rule{0.1em}{0ex}}{\text{tan}}^{2}(\theta) \phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \phantom{\rule{0.2em}{0ex}}{\text{tan}}^{2}(\theta) =1-{\text{sec}}^{2}(\theta) .\hfill \\[5mm]\ds &\ds =\int\limits_{0}^{{\text{sec}}^{-1}\left(5\text{/}3\right)}9\left({\text{sec}}^{2}(\theta) -1\right)\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) d\theta \hfill &\ds &\ds &\ds \text{Expand.}\hfill \\[5mm]\ds &\ds =\int\limits_{0}^{{\text{sec}}^{-1}\left(5\text{/}3\right)}9\left({\text{sec}}^{3}(\theta) -\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) \right)d\theta \hfill &\ds &\ds &\ds \text{Evaluate the integral.}\hfill \\[5mm]\ds &\ds =\left(\frac{9}{2}\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) +\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) |+\frac{9}{2}\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) \right)-9\phantom{\rule{0.1em}{0ex}}\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) +\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) |\Big|_0^{\sec^{-1}(5\text{/}3)}\hfill &\ds &\ds &\ds \text{Simplify.}\hfill \\[5mm]\ds &\ds =\frac{9}{2}\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) \phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) -\frac{9}{2}\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(\theta) +\text{tan}\phantom{\rule{0.1em}{0ex}}(\theta) |\Big|_0^{\sec^{-1}(5\text{/}3)}\hfill &\ds &\ds &\ds \begin{array}{l}\text{Evaluate. Use that}\\[5mm]\phantom{\rule{0.2em}{0ex}}\text{sec}\left({\text{sec}}^{-1}\left(\frac{5}{3}\right)\right)=\frac{5}{3}\hfill \\[5mm]\ds \text{and}\phantom{\rule{0.2em}{0ex}}\text{tan}\left({\text{sec}}^{-1}\left(\frac{5}{3}\right)\right)=\frac{4}{3}.\hfill \end{array}\hfill \\[5mm]\ds &\ds =\frac{9}{2}\cdot \frac{5}{3}\cdot \frac{4}{3}-\frac{9}{2}\text{ln}\left|\frac{5}{3}+\frac{4}{3}\right|-\left(\frac{9}{2}\cdot 1\cdot 0-\frac{9}{2}\text{ln}|1+0|\right)\hfill &\ds &\ds &\ds \\[5mm]\ds &\ds =10-\frac{9}{2}\text{ln}\phantom{\rule{0.1em}{0ex}}3.\hfill &\ds &\ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-0279acab2c3ad4d479075a40197e0476_l3.png)
Evaluate Assume that
Answer
Hint
Substitute and
Key Concepts
- For integrals involving
use the substitution
and
- For integrals involving
use the substitution
and
- For integrals involving
substitute
and
Exercises
Simplify the following expressions by writing each one using a single trigonometric function.
1.
Answer
2.
3.
Answer
4.
Use the technique of completing the square to express each quadratic polynomial in the form .
5.
Answer
6.
7.
Answer
Evaluate the following integrals using the method of trigonometric substitution.
8.
9. (
)
Answer
10.
11.
Answer
12.
13.
Answer
14.
15.
Answer
(Hint: .)
16.
17.
Answer
18.
(Hint: factor a power of out of the root.)
19.
(Hint: when factoring a power of out of the root, be careful with the signs.)
Answer
20.
21.
Answer
22.
23.
Answer
24.
25.
Answer
26.
27.
Answer
In the following exercises, use the substitutions or
Express the final answers in terms of the variable x.
28.
29.
Answer
30.
31.
Answer
32.
33.
Answer
Combine the technique of completing the square with a trignometric substitution to evaluate the following integrals.
34.
35.
Answer
36.
37.
Answer
38.
39. Evaluate the integral using geometry.
Answer
area of a semicircle with radius 3
40. Find the area enclosed by the ellipse
41. Evaluate the integral using two different substitutions. First, let
and evaluate using trigonometric substitution. Second, let
and use trigonometric substitution. Are the answers the same?
Answer
and
; these answers are the same since
and
is a constant.
42. Evaluate the integral using the substitution
Next, evaluate the same integral using the substitution
Show that the results are equivalent.
43. Evaluate the integral using the form
Next, evaluate the same integral using
Are the results the same?
Answer
is the result using either method.
44. State the method of integration you would use to evaluate the integral Why did you choose this method?
45. State the method of integration you would use to evaluate the integral Why did you choose this method?
Answer
Use trigonometric substitution
46. Find the area bounded by
47. During each cycle, the velocity v (in feet per second) of a robotic welding device is given by where t is time in seconds. Find the expression for the displacement s (in feet) as a function of t if
when
Answer
48. An oil storage tank can be described as the volume generated by revolving the area bounded by about the x-axis. Find the volume of the tank (in cubic meters).
49. The region bounded by the graph of and the x-axis between
and
is revolved about the x-axis. Find the volume of the solid that is generated.
Answer
50. Find the length of the arc of the curve over the interval
51. Find the length of the curve between
and
Answer
52. Find the area of the surface generated by revolving the curve from
about the y-axis.
Glossary
- trigonometric substitution
- an integration technique that converts an algebraic integral containing expressions of the form
or
into a trigonometric integral