3.2 Trigonometric Integrals
Learning Objectives
- Solve integration problems involving products of powers of
and
- Integrate products of sines and cosines of different angles.
- Solve integration problems involving products of powers of
and
- Use reduction formulas to evaluate trigonometric integrals.
In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called trigonometric integrals. They are an important part of the integration technique called trigonometric substitution used for integrating functions involving certain root expressions that will be discussed in the next section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and spherical coordinate systems later. Let’s begin our study with products of powers of and
Integrating Products and Powers of sin(x) and cos(x)
A key idea behind the strategy used to integrate combinations of powers of and
involves rewriting these expressions as sums and differences of integrals of the form
or
that can be evaluated using u-substitution. Before describing the general process in detail, let’s take a look at the following examples.
Evaluating 
Evaluate
Solution
Make a substitution In this case,
Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds {\int }^{}{\text{cos}}^{3}\phantom{\rule{0.2em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds = - {\int }^{}{u}^{3}\phantom{\rule{0.2em}{0ex}}du\hfill \\[5mm]\ds \hfill &\ds =-\frac{1}{4}{u}^{4}+C\hfill \\[5mm]\ds \hfill &\ds =-\frac{1}{4}{\text{cos}}^{4}\phantom{\rule{0.2em}{0ex}}(x)+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-d61c8eab3768ac60b97a56dc0114f8b7_l3.png)
Evaluate
Answer
Hint
Take
A Preliminary Example: Evaluating
When
is Odd
Evaluate
Solution
To convert this integral into a combination of integrals the form rewrite
We now make a substitution , which means that
, and obtain
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds {\int }^{}{\text{cos}}^{2}(x)\phantom{\rule{0.1em}{0ex}}{\text{sin}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds ={\int }^{}{\text{cos}}^{2}(x)\left(1-{\text{cos}}^{2}(x)\right)\text{sin}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill \\[5mm]\ds \hfill &\ds = - {\int }^{}{u}^{2}\left(1-{u}^{2}\right)du\hfill \\[5mm]\ds \hfill &\ds ={\int }^{}\left({u}^{4}-{u}^{2}\right)du\hfill \\[5mm]\ds \hfill &\ds =\frac{1}{5}{u}^{5}-\frac{1}{3}{u}^{3}+C\hfill \\[5mm]\ds \hfill &\ds =\frac{1}{5}{\text{cos}}^{5}(x)-\frac{1}{3}{\text{cos}}^{3}(x)+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-cfda080d7f0548dc20bcb5d4b84d437f_l3.png)
Evaluate
Answer
Hint
Write and let
In the next example, we see the strategy that must be applied when there are only even powers of and
For integrals of this type, the identities
and
are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the double-angle identity and the Pythagorean identity
Integrating an Even Power of 
Evaluate
Solution
To evaluate this integral, let’s use the trigonometric identity Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds {\int }^{}{\text{sin}}^{2}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds ={\int }^{}\left(\frac{1}{2}-\frac{1}{2}\text{cos}\left(2x\right)\right)\,dx \hfill \\[5mm]\ds \hfill &\ds =\frac{1}{2}x-\frac{1}{4}\text{sin}\left(2x\right)+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-7a709555de98097fa817529fd244311e_l3.png)
Evaluate
Answer
Hint

The general process for integrating products of powers of and
is summarized in the following set of guidelines.
Problem-Solving Strategy: Integrating Products of Powers of sin(x) and cos(x)
To evaluate use the following strategies:
- If
is odd, rewrite
and use the identity
to rewrite
in terms of
Integrate using the substitution
This substitution makes
- If
is odd, rewrite
and use the identity
to rewrite
in terms of
Integrate using the substitution
This substitution makes
(Note: If bothand
are odd, either strategy 1 or strategy 2 may be used.)
- If both
and
are even, use identities
and
After applying these formulas, simplify and reapply strategies 2 and 3 to the combination of powers of
as appropriate.
Evaluating
When
is Odd
Evaluate
Solution
Since the power on is odd, use strategy 2.
![Rendered by QuickLaTeX.com \ds \begin{array}{cccc}\hfill\ds{\int }^{}{\text{cos}}^{5}(x)\phantom{\rule{0.1em}{0ex}}{\text{sin}}^{8}(x)\phantom{\rule{0.2em}{0ex}}\,dx &\ds ={\int }^{}{\text{cos}}^{4}(x)\phantom{\rule{0.1em}{0ex}}{\text{sin}}^{8}(x)\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \text{Break off}\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}(x).\hfill \\[5mm]\ds &\ds ={\int }^{}{\left({\text{cos}}^{2}(x)\right)}^{2}\sin^8(x)\text{cos}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \text{Rewrite}\phantom{\rule{0.2em}{0ex}}{\text{cos}}^{4}(x)={\left({\text{cos}}^{2}(x)\right)}^{2}.\hfill \\[5mm]\ds &\ds ={\int }^{}{\left(1-{\text{sin}}^{2}(x)\right)}^{2}\sin^8(x)\text{cos}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}{\text{cos}}^{2}(x)=1-{\text{sin}}^{2}(x).\hfill \\[5mm]\ds &\ds ={\int }^{}{\left(1-{u}^{2}\right)}^{2}u^8\,du\hfill &\ds &\ds \text{Let}\phantom{\rule{0.2em}{0ex}}u=\text{sin}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}du= \text{cos}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx .\hfill \\[5mm]\ds &\ds ={\int }^{}\left( {u}^{8}-2{u}^{10}+{u}^{12}\right)du\hfill &\ds &\ds \text{Expand}.\hfill \\[5mm]\ds &\ds =\frac{1}{9}{u}^{9}-\frac{2}{11}{u}^{11}+\frac{1}{13}{u}^{13}+C\hfill &\ds &\ds \text{Evaluate the integral}.\hfill \\[5mm]\ds &\ds =\frac{1}{9}{\text{sin}}^{9}(x)-\frac{2}{11}{\text{sin}}^{11}(x)+\frac{1}{13}{\text{sin}}^{13}(x)+C.\hfill &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}u=\text{sin}\phantom{\rule{0.1em}{0ex}}(x).\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-d10d9d5d093da661b7c8ef874b993062_l3.png)
Evaluating
When
and
are Even
Evaluate
Solution
Since both the powers of and
are even
we must use strategy 3. Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{cccc}\hfill \ds{\int }^{}{\text{sin}}^{4}(x)\phantom{\rule{0.2em}{0ex}}\,dx &\ds ={\int }^{}{\left({\text{sin}}^{2}(x)\right)}^{2}\,dx \hfill &\ds &\ds \text{Rewrite}\phantom{\rule{0.2em}{0ex}}{\text{sin}}^{4}(x)={\left({\text{sin}}^{2}(x)\right)}^{2}.\hfill \\[5mm]\ds &\ds ={\int }^{}{\left(\frac{1}{2}-\frac{1}{2}\text{cos}\left(2x\right)\right)}^{2}\,dx \hfill &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}{\text{sin}}^{2}(x)=\frac{1}{2}-\frac{1}{2}\text{cos}\left(2x\right).\hfill \\[5mm]\ds &\ds ={\int }^{}\left(\frac{1}{4}-\frac{1}{2}\text{cos}\left(2x\right)+\frac{1}{4}{\text{cos}}^{2}\left(2x\right)\right)\,dx \hfill &\ds &\ds \text{Expand}\phantom{\rule{0.1em}{0ex}}{\left(\frac{1}{2}-\frac{1}{2}\text{cos}\left(2x\right)\right)}^{2}.\hfill \ds &\ds \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-5b468d729c4f2981df11d5dca3e89b88_l3.png)
Since has an even power, we use strategy 3 again and substitute
to continue the equalities as follows:
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds={\int }^{}\left(\frac{1}{4}-\frac{1}{2}\text{cos}\left(2x\right)+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}\text{cos}\left(4x\right)\right)\right)\,dx \hfill &\hfill\\[5mm]\ds={\int }^{}\left(\frac{3}{8}-\frac{1}{2}\text{cos}\left(2x\right)+\frac{1}{8}\text{cos}\left(4x\right)\right)\,dx \hfill &\ds \text{Simplify}.\hfill \\[5mm]\ds =\frac{3}{8}x-\frac{1}{4}\text{sin}\left(2x\right)+\frac{1}{32}\phantom{\rule{0.1em}{0ex}}\text{sin}\left(4x\right)+C.\hfill &\ds \text{Evaluate the integral}.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-4482f5e32a1996244d3435d5d66ae42a_l3.png)
Evaluate
Answer
Hint
Use strategy 2. Write and substitute
Evaluate
Answer
Hint
Use strategy 3 and substitute .
In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often necessary to integrate products that include
and
These integrals are evaluated by applying trigonometric identities, as outlined below.
Integrating Products of Sines and Cosines of Different Angles
To integrate products involving
and
use the following identities
![Rendered by QuickLaTeX.com \ds \begin{array}{ll}\text{sin}\left(ax\right)\text{sin}\left(bx\right)&=\ds\frac{1}{2}\text{cos}\big(\left(a-b\right)x\big)-\frac{1}{2}\text{cos}\big(\left(a+b\right)x\big)\hfill\\[5mm]\ds \text{sin}\left(ax\right)\text{cos}\left(bx\right) &\ds=\frac{1}{2}\text{sin}\big(\left(a-b\right)x\big)+\frac{1}{2}\text{sin}\big(\left(a+b\right)x\big)\hfill\\[5mm]\ds \text{cos}\left(ax\right)\text{cos}\left(bx\right)&\ds=\frac{1}{2}\text{cos}\big(\left(a-b\right)x\big)+\frac{1}{2}\text{cos}\big(\left(a+b\right)x\big)\hfill\end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-53249903f47e413d9387c20a98f433ed_l3.png)
These formulas may be derived from the sum-of-angle formulas for sine and cosine.
Evaluating 
Evaluate
Solution
Apply the identity Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds {\int }^{}\text{sin}\left(5x\right)\text{cos}\left(3x\right)\,dx \hfill &\ds ={\int }^{}\left(\frac{1}{2}\text{sin}\left(2x\right)+\frac{1}{2}\text{sin}\left(8x\right)\right)\,dx \hfill \\[5mm]\ds \hfill &\ds =-\frac{1}{4}\text{cos}\left(2x\right)-\frac{1}{16}\phantom{\rule{0.1em}{0ex}}\text{cos}\left(8x\right)+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-7b18ac3c167135bf408a6fe083d5d9bd_l3.png)
Evaluate
Answer
Hint
Rewrite
Integrating Products and Powers of tan(x) and sec(x)
Before discussing the integration of products of powers of and
it is useful to recall the integrals involving
and
we have already learned:
(Formulas 1 and 2 come directly from the table of indefinite integrals, while formulas 3 and 4 were derived in Section 1.5 Substitution.)
For most integrals of products of powers of and
we rewrite the expression we wish to integrate as the sum or difference of integrals of the form
or
As we see in the following example, we can evaluate these new integrals by using appropriate substitution.
Evaluating 
Evaluate
Solution
Start by rewriting as
If we now let
, then
, and so
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds{\int }^{}{\text{sec}}^{5}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}dx &\ds ={\int }^{}{\text{sec}}^{4}(x)\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}dx \hfill \\[5mm]\ds &\ds ={\int }^{}{u}^{4}\,du\hfill \\[5mm]\ds &\ds =\frac{1}{5}{u}^{5}+C\hfill \\[5mm]\ds &\ds =\frac{1}{5}{\text{sec}}^{5}(x)+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-9e19d0ddbbcecb855766ffb9631bba15_l3.png)
Evaluate
Answer
Hint
Let and
We now take a look at the various strategies for integrating products of powers of and
Problem-Solving Strategy: Evaluating 
To evaluate use the following strategies:
- If
is even and
rewrite
and use
to rewrite
in terms of
Let
and
- If
is odd and
rewrite
and use
to express
in terms of
Let
and
(Note: Ifis even and
is odd, then either strategy 1 or strategy 2 may be used.)
- If
is even and
is odd, then use
to express
in terms of
Use integration by parts to integrate odd powers of
Evaluating
When
is Even
Evaluate
Solution
Since the power on is even, rewrite
and use
to express the first
in terms of
We now make a substitution
, in which case
, and we obtain
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds{\int }^{}{\text{tan}}^{6}(x)\phantom{\rule{0.1em}{0ex}}{\text{sec}}^{4}(x)\phantom{\rule{0.2em}{0ex}}\,dx &\ds ={\int }^{}{\text{tan}}^{6}(x)\left({\text{tan}}^{2}(x)+1\right){\text{sec}}^{2}(x)\hfill \\[5mm]\ds &\ds ={\int }^{}{u}^{6}\left({u}^{2}+1\right)du\hfill \\[5mm]\ds &\ds ={\int }^{}\left({u}^{8}+{u}^{6}\right)du\hfill \\[5mm]\ds &\ds =\frac{1}{9}{u}^{9}+\frac{1}{7}{u}^{7}+C\hfill \\[5mm]\ds &\ds =\frac{1}{9}{\text{tan}}^{9}(x)+\frac{1}{7}{\text{tan}}^{7}(x)+C.\hfill &\ds &\ds \hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-0f261d37cd8a4e1ab92428318d91d09f_l3.png)
Evaluating
When
is Odd
Evaluate
Solution
Since the power of is odd, we begin by rewriting
We then notice that
, and make a substitution
with
. With this, we obtain
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds \hfill {\int }^{}{\text{tan}}^{5}(x)\phantom{\rule{0.1em}{0ex}}{\text{sec}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx &\ds =\ds {\int }^{}{\left(\sec^2(x)-1\right)}^{2}{\text{sec}}^{2}(x)\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill \\[5mm]\ds &\ds = {\int }^{}{\left({u}^{2}-1\right)}^{2}{u}^{2}du\hfill \\[5mm]\hfill &=\ds {\int }^{}\left({u}^{6}-2{u}^{4}+{u}^{2}\right)du\hfill \\[5mm]\ds &\ds = \frac{1}{7}{u}^{7}-\frac{2}{5}{u}^{5}+\frac{1}{3}{u}^{3}+C\hfill \\[5mm]\ds &\ds =\frac{1}{7}{\text{sec}}^{7}(x)-\frac{2}{5}{\text{sec}}^{5}(x)+\frac{1}{3}{\text{sec}}^{3}(x)+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-83f0f1c6f5856564ba3178e848a1c4a6_l3.png)
Evaluating 
Evaluate
Solution
Although there is no under the integral, we can still use the strategy outlined above for the case when the power
of
is odd. For this, we will need to multiply and divide the integrand by
:
Hence, using the substitution , we obtain
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds {\int }^{}{\text{tan}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds ={\int }^{}\dfrac{\sec^2(x)-1}{\sec(x)}\sec(x)\tan(x)\,dx \hfill \\[5mm]\ds \hfill &\ds ={\int }^{}\dfrac{u^2-1}{u}\,du={\int }^{}\left(u-\dfrac1u\right)\,du \hfill \\[5mm]\ds \hfill &\ds =\dfrac12 u^2-\ln|u|+C=\frac{1}{2}{\text{sec}}^{2}(x)-\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(x)|+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-0ff0556e4bcea0404019b9776d375612_l3.png)
Evaluating 
Integrate
Solution
This integral requires integration by parts. Let and
These choices make
and
Thus,
![Rendered by QuickLaTeX.com \ds \begin{array}{cccc}\hfill \ds{\int }^{}{\text{sec}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx &\ds =\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)-{\int }^{}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \\[5mm]\ds &\ds =\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)-{\int }^{}{\text{tan}}^{2}(x)\phantom{\rule{0.1em}{0ex}}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \text{Simplify}.\hfill \\[5mm]\ds &\ds =\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)-{\int }^{}\left({\text{sec}}^{2}(x)-1\right)\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \text{Substitute}\phantom{\rule{0.2em}{0ex}}{\text{tan}}^{2}(x)={\text{sec}}^{2}(x)-1.\hfill \\[5mm]\ds &\ds =\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)+{\int }^{}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx -{\int }^{}{\text{sec}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds &\ds \text{Rewrite}.\hfill \\[5mm]\ds &\ds =\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)+\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(x)+\text{tan}\phantom{\rule{0.1em}{0ex}}(x)|-{\int }^{}{\text{sec}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx .\hfill &\ds &\ds \text{Evaluate}{\int }^{}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx .\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-05e6f307cc4ad9be074049adab5a07de_l3.png)
We now have
We see that the last integral is the same as the original one. Let be a particular antiderivative of
. Substituting
instead of
into the above equality, we get the following equation for
.
.
Adding to both sides, we obtain
Dividing by 2, we arrive at
Since an indefinite integral can be found by adding an arbitrary constant to a particular antiderivative of the integrand, we obtain that .
Evaluate
Answer
Reduction Formulas
Evaluating for odd values of
requires integration by parts. In addition, we must also know the value of
to evaluate
The evaluation of
also requires being able to integrate
To make the process easier, we can derive and apply the following power reduction formulas. They allow us to replace the integral of a power of
or
with the integral of a lower power of
or
Reduction Formulas for
and 
The first power reduction rule may be verified by applying integration by parts. The second may be verified by rewriting
Revisiting 
Apply a reduction formula to evaluate
Solution
By applying the first reduction formula with , we obtain
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\ds {\int }^{}{\text{sec}}^{3}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill &\ds =\frac{1}{3-1}\text{sec}^{3-2}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)+\frac{3-2}{3-1}{\int }^{}\text{sec}^{3-2}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill \\[5mm]\ds \hfill &\ds =\frac{1}{2}\text{sec}\phantom{\rule{0.1em}{0ex}}(x)\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}(x)+\frac{1}{2}\text{ln}|\text{sec}\phantom{\rule{0.1em}{0ex}}(x)+\text{tan}\phantom{\rule{0.1em}{0ex}}(x)|+C.\hfill \end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-a790e510fba8903ecc1b8efed64dbbd9_l3.png)
Using a Reduction Formula
Evaluate
Solution
Applying the second reduction formula with , we obtain
.
To evaluate , we apply the second reduction formula with
, which allows to continue the chain of equalities as follows:
![Rendered by QuickLaTeX.com \ds \begin{array}{cc}\hfill \ds{\int }^{}{\text{tan}}^{4}(x)\phantom{\rule{0.2em}{0ex}}\,dx &\ds =\frac{1}{3}{\text{tan}}^{3}(x)-{\int }^{}{\text{tan}}^{2}(x)\phantom{\rule{0.2em}{0ex}}\,dx \hfill \\[5mm]\ds &\ds =\frac{1}{3}{\text{tan}}^{3}(x)-\left(\frac1{2-1}\text{tan}^{2-1}\phantom{\rule{0.1em}{0ex}}(x)-{\int }^{}{\text{tan}}^{2-2}(x)\phantom{\rule{0.2em}{0ex}}\,dx \right)\hfill\\[5mm]\ds &\ds =\frac{1}{3}{\text{tan}}^{3}(x)-\text{tan}\phantom{\rule{0.1em}{0ex}}(x)+{\int }^{}1\phantom{\rule{0.2em}{0ex}}\,dx \hfill \\[5mm]\ds &\ds =\frac{1}{3}{\text{tan}}^{3}(x)-\text{tan}\phantom{\rule{0.1em}{0ex}}(x)+x+C.\hfill\end{array}](https://pressbooks.openedmb.ca/app/uploads/quicklatex/quicklatex.com-7ba5226c12d0e86b19de8e1fe99ad0e1_l3.png)
Apply the reduction formula to
Answer
Key Concepts
Integrals of trigonometric functions can be evaluated using various strategies. These strategies include the following.
- Applying trigonometric identities to rewrite the integrand so that it may be evaluated via an apropriate substitution.
- Using integration by parts.
- Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the sum of individual sine and cosine functions.
- Applying reduction formulas.
Key Equations
- Sine Products
- Sine and Cosine Products
- Cosine Products
- Power Reduction Formula
- Power Reduction Formula
Exercises
Fill in the blank to make a true statement.
1.
Answer
2.
Use an identity to reduce the power of the trigonometric function to a trigonometric function raised to the first power.
3.
Answer
4.
Evaluate each of the following integrals using appropriate substitution.
5.
Answer
6.
7.
Answer
8.
9.
Answer
10.
Compute the following integrals using the guidelines for integrating powers of trigonometric functions. (Note: Some of the problems may be done using techniques of integration learned previously.)
11.
Answer
12.
13.
Answer
14.
15.
Answer
16.
17.
Answer
18.
19.
(Hint: use integration by parts)
Answer
20.
21.
Answer
22.
23.
Answer
24.
For the following exercises, evaluate the integrals involving parameter .
25.
Answer
26.
Use the double-angle formulas to evaluate the following integrals.
27.
Answer
28.
29.
Answer
30.
31.
Answer
32.
(Hint: to integrate , rewrite it as
and use the formula.)
For the following exercises, evaluate the definite integrals using an appropriate trigonometric formula.
33.
Answer
34.
35.
Answer
36.
37.
Answer
38.
39.
Answer
40.
41.
Answer
42. Find the area of the region bounded by the curves
43. Find the area of the region bounded by the curves
Answer
1
44. A particle moves in a straight line with the velocity function Find its position function
if
45. Find the average value of the function over the interval
Answer
46. Find the length of the curve
47. Find the length of the curve
Answer
48. Let be the region below the curve
and above the x-axis over the interval
. Find the volume generated by revolving
about the x-axis.
49. The inner product of two functions f and g over is defined by
Two non-zero functions f and g are said to be orthogonal if
Show that and
are orthogonal over the interval
Answer
50. Let be real numbers such that
. Evaluate
For each pair of integrals, determine which one is easier to evaluate. Explain your reasoning.
51. or
Answer
The first integral is easier to evaluate as it can be done just using a substitution evaluated , while the second integral is of a complicated type when the power of tangent is even and the power of secant is odd.
52. or
Glossary
- power reduction formula
- a rule that allows an integral of a power of a trigonometric function to be exchanged for an integral involving a lower power
- trigonometric integral
- an integral involving powers and products of trigonometric functions