Chapter 7: Angular Kinematics
7.3 Centripetal Acceleration
Paul Peter Urone and Roger Hinrichs
Learning Objectives
By the end of this section, you will be able to:
- Establish the expression for centripetal acceleration.
- Explain the centrifuge.
We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in your car. (If you hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you notice is a sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the more noticeable this acceleration will become. In this section we examine the direction and magnitude of that acceleration.
The figure below shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of an object moving in uniform circular motion (resulting from a net external force) the centripetal acceleration (

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle formed by the velocity vectors and the one formed by the radii
Acceleration is
Then we divide this by
Finally, noting that
which is the acceleration of an object in a circle of radius
It is also useful to express
Recall that the direction of
A centrifuge (see the figure below, b) is a rotating device used to separate specimens of different densities. High centripetal acceleration significantly decreases the time it takes for separation to occur, and makes separation possible with small samples. Centrifuges are used in a variety of applications in science and medicine, including the separation of single cell suspensions such as bacteria, viruses, and blood cells from a liquid medium and the separation of macromolecules, such as DNA and protein, from a solution. Centrifuges are often rated in terms of their centripetal acceleration relative to acceleration due to gravity
Example: How Does the Centripetal Acceleration of a Car Around a Curve Compare with That Due to Gravity?
What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s (about 90 km/h)? Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See figure (a) below.
Strategy
Because
Solution
Entering the given values of
Discussion
To compare this with the acceleration due to gravity

Example: How Big Is the Centripetal Acceleration in an Ultracentrifuge?
Calculate the centripetal acceleration of a point 7.50 cm from the axis of an ultracentrifuge spinning at
Strategy
The term rev/min stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity
Solution
To convert
Now the centripetal acceleration is given by the second expression in
Converting 7.50 cm to meters and substituting known values gives
Note that the unitless radians are discarded in order to get the correct units for centripetal acceleration. Taking the ratio of
Discussion
This last result means that the centripetal acceleration is 472,000 times as strong as
Of course, a net external force is needed to cause any acceleration, just as Newton proposed in his second law of motion. So a net external force is needed to cause a centripetal acceleration. In Chapter 7.4: Centripetal Force, we will consider the forces involved in circular motion.
Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.