Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem Section 90 - Review - Ionic Compounds in Aqueous Solution: Practice problems and worked answers

Acid-Base Equilibria

Section 90 – Review - Ionic Compounds in Aqueous Solution

- 1. Identify the major species that would be present in aqueous solutions of each the following compounds.
 - (a) HI
 - (b) CsCl
 - (c) NH₄NO₃
 - (d) $Sr(OH)_2$

Answer(s):

- (a) $H_2O(I)$, $H^+(aq)$, and $I^-(aq)$
- (b) $H_2O(I)$, $Cs^+(aq)$, and $Cl^-(aq)$
- (c) $H_2O(I)$, $NH_4^+(aq)$, and $NO_3^-(aq)$
- (d) $H_2O(I)$, $Sr^{2+}(aq)$, and $OH^{-}(aq)$
- 2. Determine the concentrations of all major species in the aqueous solutions indicated below. (You can ignore the solvent, water, which would be present at a relatively constant 55.5 M).
 - (a) 0.100 M HI
 - (b) 0.050 M CsCl
 - (c) 0.020 M NH₄NO₃
 - (d) 0.200 M Sr(OH)₂

Answer(s):

- (a) Since HI is fully dissociated in aqueous solution, and the stoichiometry is such that there is 1 mol of H⁺ per mol of HI; and 1 mol of I⁻ per mol of HI, the concentration of each of H⁺ and I⁻ is equal to the original concentration of HI (0.100 M). Thus, there is 0.100 M H⁺(aq) and 0.100 M I⁻(aq)
- (b) By the same reasoning above, the concentrations would be 0.050 M Cs⁺(aq) and 0.050 M Cl⁻(aa)
- (c) By the same reasoning above, the concentrations would be 0.020 M $NH_4^+(aq)$ and 0.020 M $NO_3^-(aq)$
- (d) Note that in this case, the stoichiometry is such that there are TWO moles of hydroxide for every mole of Sr^{2+} . Thus, if the concentration is 0.200 M, there is 0.200 M $Sr^{2+}(aq)$ and 0.400 M $OH^{-}(aq)$.