Section 76 – Chemical Reaction Rates

76-1. What is the difference between average rate, initial rate, and instantaneous rate?

Solution

The instantaneous rate is the rate of a reaction at any particular point in time, a period of time that is so short that the concentrations of reactants and products change by a negligible amount. The initial rate is the instantaneous rate of reaction as it starts (as product just begins to form). Average rate is the average of the instantaneous rates over a time period.

76-2. Ozone decomposes to oxygen according to the equation ${}^{2}O_{3}(g) \longrightarrow {}^{3}O_{2}(g)$. Write the equation that relates the rate expressions for this reaction in terms of the disappearance of O_{3} and the formation of oxygen.

Solution

Write the rate of change with a negative sign for substances decreasing in concentration (reactants) and a positive sign for those substances being formed (products). Multiply each term by the reciprocal of its coefficient:

rate =
$$-\frac{[O_3]}{\Delta t} = \frac{2}{3} \frac{\Delta [O_2]}{\Delta t}$$

76-3. In the nuclear industry, chlorine trifluoride is used to prepare uranium hexafluoride, a volatile compound of uranium used in the separation of uranium isotopes. Chlorine trifluoride is prepared by the reaction $\text{Cl}_2(g) + 3\text{F}_2(g) \longrightarrow 2\text{ClF}_3(g)$. Write the equation that relates the rate expressions for this reaction in terms of the disappearance of Cl_2 and F_2 and the formation of ClF_3 .

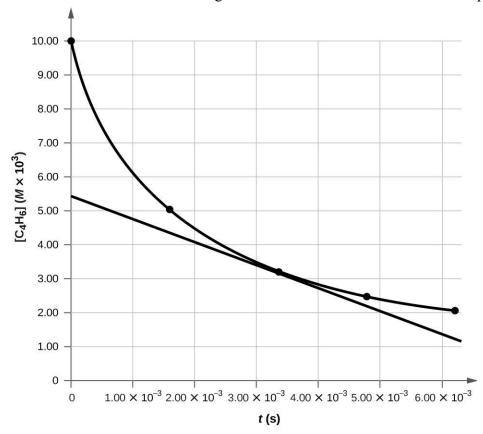
Solution

Write the rate of change with a negative sign for substances decreasing in concentration (reactants) and a positive sign for those substances being formed (products). Multiply each term by the reciprocal of its coefficient:

rate =
$$+\frac{1}{2}\frac{\Delta[CIF_3]}{\Delta t} = -\frac{\Delta[Cl_2]}{\Delta t} = -\frac{1}{3}\frac{\Delta[F_2]}{\Delta t}$$

Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem
Section 76 - Chemical Reaction Rates, End-of-section Questions and Worked Answers

76-4. A study of the rate of dimerization of C_4H_6 gave the data shown in the table:


$$2C_4H_6 \longrightarrow C_8H_{12}$$

Time	$\left[\mathrm{C_{4}H_{6}}\right] \left(M\right)$
(s)	
0	1.00×10^{-2}
1600	5.04×10^{-3}
3200	3.37×10^{-3}
4800	2.53×10^{-3}
6200	2.08×10^{-3}

- (a) Determine the average rate of dimerization between 0 s and 1600 s, and between 1600 s and 3200 s.
- (b) Estimate the instantaneous rate of dimerization at 3200 s from a graph of time versus [C₄H₆]. What are the units of this rate?
- (c) Determine the average rate of formation of C_8H_{12} at 1600 s and the instantaneous rate of formation at 3200 s from the rates found in parts (a) and (b).

Solution

Plot the concentration of C₄H₆ against time and determine the various slopes required:

Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem
Section 76 - Chemical Reaction Rates, End-of-section Questions and Worked Answers

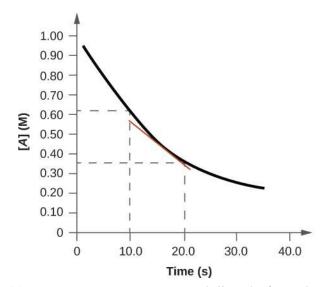
rate =
$$-\frac{5.04 \times 10^{-3} M - 1.00 \times 10^{-2} M}{1600 \text{ s} - 0 \text{ s}} = 3.10 \times 10^{-6} M \text{ s}^{-1}$$

rate = $-\frac{3.37 \times 10^{-3} M - 5.04 \times 10^{-3} M}{3200 \text{ s} - 1600 \text{ s}} = 1.04 \times 10^{-6} M \text{ s}^{-1}$

(b) from the approximate points on tangent line in the figure at 3200 s:

rate =
$$-\frac{2.50 \times 10^{-3} M - 4.50 \times 10^{-3} M}{4.30 \times 10^{3} \text{ s} - 1.7 \times 10^{3} \text{ s}} = 7.7 \times 10^{-7} M \text{ s}^{-1}$$
;
(c) average rate = $\frac{3.10 \times 10^{-6} M - 0 M}{2} = 1.55 \times 10^{-6} M \text{ s}^{-1}$
Instantaneous rate = $\frac{7.7 \times 10^{-7}}{2} = 3.8 \times 10^{-7} M \text{ s}^{-1}$

somewhat different values may be obtained depending upon the slope of the drawn line.


76-5. A study of the rate of the reaction represented as ${}^{2A} \longrightarrow {}^{B}$ gave the following data:

Time	0.0	5.0	10.0	15.0	20.0	25.0	35.0
(s)							
[A]	1.00	0.775	0.625	0.465	0.360	0.285	0.230
(M)							

- (a) Determine the average rate of disappearance of A between 0.0 s and 10.0 s, and between 10.0 s and 20.0 s.
- (b) Estimate the instantaneous rate of disappearance of A at 15.0 s from a graph of time versus
- [A]. What are the units of this rate?
- (c) Use the rates found in parts (a) and (b) to determine the average rate of formation of B between 0.00 s and 10.0 s, and the instantaneous rate of formation of B at 15.0 s.

Solution

Plot the concentration against time and determine the required slopes:

(a) Average rates are computed directly from the reaction's rate expression and the specified concentration/time data:

$$0 - 10 \text{ s} = -\frac{0.625 M - 1.00 M}{10.0 \text{ s} - 0.00 \text{ s}} = 0.0375 \text{ mol } \text{L}^{-1} \text{ s}^{-1}$$
average rate,

 $10 - 20 \text{ s} = -\frac{0.360 M - 0.625 M}{20.0 \text{ s} - 10.0 \text{ s}} = 0.0265 \text{ mol } \text{L}^{-1} \text{ s}^{-1}$ average rate,

(b) The instantaneous rate is estimated as the slope of a line tangent to the curve at 15 s. Such a line is drawn in the plot, and two concentration/time data pairs are used to estimate the line's slope:

instantaneous rate,
$$15 \text{ s} = -\frac{0.35 M - 0.58 M}{20.0 \text{ s} - 10.0 \text{ s}} = 0.023 \text{ mol } \text{L}^{-1} \text{ s}^{-1}$$

(c) To derive rates for the formation of B from the previously calculated rates for the disappearance of A, we consider the stoichiometry of the reaction, namely, B will be produced at one-half the rate of the disappearance of A:

rate =
$$-\frac{1}{2} \frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$$

 $\frac{0.0375 \; mol \; L^{^{-1}} \; s^{^{-1}}}{2} \; = \; 0.0188 \; mol \; L^{^{-1}} \; s^{^{-1}}$ average rate for B formation =

$$= \frac{0.023 \text{ mol } L^{-1} \text{ s}^{-1}}{2} = 0.0120 \text{ mol } L^{-1} \text{ s}^{-1}$$

instantaneous rate for B formation =

76-6. Consider the following reaction in aqueous solution:

$$5\mathrm{Br}^{-}(aq) + \mathrm{BrO}_{3}^{-}(aq) + 6\mathrm{H}^{+}(aq) \longrightarrow 3\mathrm{Br}_{2}(aq) + 3\mathrm{H}_{2}\mathrm{O}(l)$$

If the rate of disappearance of Br⁻(aq) at a particular moment during the reaction is 3.5×10^{-4} mol L^{-1} s⁻¹, what is the rate of appearance of Br₂(aq) at that moment?

Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem
Section 76 - Chemical Reaction Rates, End-of-section Questions and Worked Answers

Solution

$$\frac{3}{5}(3.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}) = 2.1 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$