Acid-Base Equilibria

Section 95 - Hydrolysis of Salts

- 95-1 Determine whether aqueous solutions of the following salts are acidic, basic, or neutral:
 - (a) $AI(NO_3)_3$
 - (b) RbI
 - (c) KHCO₂
 - (d) CH₃NH₃Br

Solution

- (a) $Al(NO_3)_3$ dissociates into Al^{3+} ions (acidic metal cation) and NO_3^- ions (the conjugate base of a strong acid and therefore essentially neutral). The aqueous solution is therefore acidic.
- (b) RbI dissociates into Rb⁺ ions (neutral metal cation) and I[−] ions (the conjugate base of a strong acid and therefore essentially neutral). The aqueous solution is therefore neutral.
- (c) KHCO₂ dissociates into K⁺ ions (neutral metal cation) and HCO₂⁻ ions (the conjugate base of a weak acid and therefore basic). The aqueous solution is therefore basic.
- (d) CH₃NH₃Br dissociates into CH₃NH₃⁺ ions (a weak acid) and Br⁻ ions (the conjugate base of a strong acid and therefore neutral). The aqueous solution is therefore acidic.
- 95-2 Determine whether aqueous solutions of the following salts are acidic, basic, or neutral:
 - (a) FeCl₃
 - (b) K₂CO₃
 - (c) NH₄Br
 - (d) KCIO₄

Solution

- (a) FeCl₃ dissociates into Fe³+ ions (acidic metal cation) and Cl⁻ ions (the conjugate base of a strong acid and therefore essentially neutral). The aqueous solution is therefore acidic.
- (b) K_2CO_3 dissociates into K^+ ions (neutral metal cation) and $CO_3^{\ 2^-}$ ions (the conjugate base of a weak acid and therefore basic). The aqueous solution is therefore basic.
- (c) NH_4Br dissociates into NH_4^+ ions (a weak acid) and Br^- ions (the conjugate base of a strong acid and therefore essentially neutral). The aqueous solution is therefore acidic.
- (d) KClO₄ dissociates into K⁺ ions (neutral metal cation) and ClO₄⁻ ions (the conjugate base of a strong acid and therefore neutral). The aqueous solution is therefore neutral.

- 95-3 Determine whether the following 0.10 M aqueous solutions are acidic, basic or neutral. For each solution, indicate what the pH-determining reaction, the major species present, and the pH at 25 °C. Note that <u>Ka</u> and <u>Kb</u> values for the weak acids and bases are available in the Appendices to this text.
 - (a) ammonium chloride, NH₄Cl
 - (b) hydrogen chloride, HCl
 - (c) lithium nitrite, LiNO₂
 - (d) sodium hydroxide, NaOH
 - (e) barium hydroxide, Ba(OH)₂

Solution:

- (a) NH₄Cl dissociates into NH₄⁺ ions (a weak acid) and Cl⁻ ions (the conjugate base of a strong acid and therefore essentially neutral). The aqueous solution is therefore acidic.
 - The pH-determining reaction is NH₄⁺

 ⇒ NH₃ + H⁺
 - Major species present: H₂O (the solvent), NH₄⁺, Cl⁻.
 - pH determination:

	NH ₄ ⁺ ⇌	NH ₃	+ H ⁺
I	0.100	0	~0
С	-x	+ <i>x</i>	+ <i>x</i>
Е	0.100- <i>x</i>	Х	х

We first need to calculate the Ka for NH_4^+ from the K_b for NH_3 (1.8 x 10^{-5})

$$K_w = K_a \times K_b$$
 $Ka = 10^{-14} / 1.8 \times 10^{-5} = 5.56 \times 10^{-10}$

Then,

$$Ka = \frac{[\mathrm{NH}_3][\mathrm{H}^+]}{[\mathrm{NH}_4^+]}$$

$$5.56 x 10^{-10} = \frac{[x][x]}{[0.10 - x]}$$

Given the very small value for Ka, we can assume that the "x" is neglible compared to 0.100 M, therefore the equation becomes:

$$5.56 \, x \, 10^{-10} \, = \, \frac{x^2}{0.10}$$

$$5.56 \times 10^{-11} = x^2$$

$$\sqrt{5.56 \times 10^{-1}} = \sqrt{x^2}$$

$$x = 7.45 \times 10^{-6}$$

Note that x is < 5% of 0.100, therefore our assumption was correct (we can neglect it in 0.100-x).

pH =
$$-\log(7.45 \times 10^{-6})$$

pH = 5.13

- **(b)** HCl is a strong acid and fully dissociates in aqueous solution. The Cl⁻ ions are pH neutral and so the solution is acidic.
 - The pH-determining reaction is $HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$
 - Major species present: H₂O (the solvent), H⁺, Cl⁻.
 - pH determination: Since the HCl dissociates completely, the $[H^+]$ = 0.10 M. pH = $-log[H^+]$ = -log(0.10) = 1.00
- (c) LiNO₂ dissociates into Li⁺ ions (Group I metal, pH neutral) and NO₂⁻ ions (the conjugate base of a weak acid and therefore a weak base). The aqueous solution is therefore basic.
 - The pH-determining reaction is $NO_2^- + H_2O \rightleftharpoons HNO_2 + OH^-$
 - Major species present: H₂O (the solvent), Li⁺, NO₂⁻.
 - pH determination:

We first need to calculate the Kb for NO_2^- from the K_a for HNO_2 (4.6 x 10^{-4})

$$K_w = K_a \times K_b$$

 $Kb = 10^{-14} / 4.6 \times 10^{-4} = 2.17 \times 10^{-11}$

Then,

	NO ₂ -	⇌ HNO₂	+ OH ⁻
I	0.100	0	~0
С	-X	+ <i>x</i>	+ <i>x</i>
E	0.100- <i>x</i>	Х	Х

$$Kb = \frac{[\text{HNO}_2][\text{OH}^-]}{[\text{NO}_2^-]}$$

$$2.17 x 10^{-1} = \frac{[x][x]}{[0.10 - x]}$$

Given the very small value for Kb, we can assume that the "x" is neglible compared to 0.100 M, therefore the equation becomes:

$$2.17 \times 10^{-11} = \frac{x^2}{0.10}$$
$$2.17 \times 10^{-12} = x^2$$
$$\sqrt{2.17 \times 10^{-12}} = \sqrt{x^2}$$
$$x = 1.47 \times 10^{-6}$$

Note that x is < 5% of 0.100, therefore our assumption was correct (we can neglect it in 0.100-x).

pOH =
$$-log(1.47 \times 10^{-6})$$

pOH = 5.83
pH + pOH = pKw
pH = $14.00-5.83$
pH = 8.17

- (d) sodium hydroxide dissociates completely into Na⁺ ions (a group I metal, pH neutral) and OH⁻ (a strong base), and so the solution will be basic.
 - The pH-determining reaction is NaOH(aq) \rightarrow Na⁺(aq) + OH⁻(aq)
 - Major species present: H₂O (the solvent), Na⁺, OH⁻.
 - pH determination: Since the NaOH dissociates completely, the [OH-] = 0.10 M.

$$pOH = -log[OH^{-}] = -log(0.10) = 1.00$$

 $pH = pKw - pOH = 14.00 - 1.00 = 13.00$

- (e) barium hydroxide dissociates completely into Ba²⁺ ions (a group II metal, pH neuetral0 and OH⁻ ions (a strong base), and so the solution will be basic.
 - The pH determining reaction is $Ba(OH)_2(aq) \rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$
 - Major species present: H₂O (the solvent), Ba²⁺, OH⁻.
 - pH determination: Since the Ba(OH)₂ dissociates completely, each mole of Ba(OH)₂ produces TWO moles of OH⁻. Thus the $[OH^-] = 2 \times 0.10 \text{ M} = 0.20 \text{ M}$

$$pOH = -log[OH^{-}] = -log(0.20) = 0.70$$

 $pH = pKw - pOH = 14.00 - 0.70 = 13.30$

- 95-4 Determine whether the following 0.10 M aqueous solutions are acidic, basic or neutral. For each solution, indicate what the pH-determining reaction, the major species present, and the pH at 25 $^{\circ}$ C. Note that <u>Ka</u> and <u>Kb</u> values for the weak acids and bases are available in the Appendices to this text.
 - (a) sodium nitrate, NaNO₃
 - (b) sodium benzoate, NaC₆H₅CO₂
 - (c) potassium fluoride, KF
 - (d) methylammonium chloride, CH₃NH₃Cl
 - (e) sodium cyanide, NaCN

Solution:

- (a) sodium nitrate dissociates completely into Na⁺ (a group I neutral metal ion) and NO₃⁻ (the conjugate base of the strong acid HNO₃, so NO₃⁻ is an extremely weak base that is essentially pH neutral in aqueous solution). The solution will be neutral.
 - The pH determining reaction is $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$
 - Major species present: H₂O (the solvent), Na⁺, and NO₃⁻.
 - pH determination: since the only source of protons is through the autoionization of water, we know that the pH can be determined using the Kw of water at 25 oC,

$$Kw = [OH^{-}][H^{+}] = 10^{-14}$$

Since the

$$\begin{aligned} [\text{OH}^-] &= [\text{H}^+], \\ ([\text{H}^+])^2 &= 10^{-14} \\ \sqrt{[\text{H}^+]} &= \sqrt{10^{-14}} \\ [\text{H}^+] &= 10^{-7} \\ \text{pH} &= -\text{log } 10^{-7} = 7.0 \end{aligned}$$

- (b) NaC₆H₅CO₂ dissociates completely into Na⁺ (a group I neutral metal ion) and C₆H₅CO₂⁻ (the conjugate base of the weak acid benzoic acid, so $C_6H_5CO_2$ is a weak base). The solution will be basic.
 - The pH-determining reaction is $C_6H_5CO_2 + H_2O \rightleftharpoons C_6H_5CO_2H + OH^2$
 - Major species present: H₂O (the solvent), Na⁺, C₆H₅CO₂⁻.
 - pH determination:

We first need to calculate the Kb for $C_6H_5CO_2^-$ from the K_a for $C_6H_5CO_2H$ (6.3 x 10^{-5})

$$K_w = K_a \times K_b$$

 $Kb = 10^{-14} / 6.3 \times 10^{-5} = 1.59 \times 10^{-10}$

Then,

	$C_6H_5CO_2^- \rightleftharpoons$	C ₆ H ₅ CO ₂ H	+ OH
- 1	0.100	0	~0
С	-X	+ <i>x</i>	+ <i>x</i>
Е	0.100- <i>x</i>	Х	Х

$$Kb = \frac{[C_6 H_5 CO_2 -][OH^-]}{[C_6 H_5 CO_2 H]}$$

$$1.59 \times 10^{-10} = \frac{[x][x]}{[0.10 - x]}$$

Given the very small value for Kb, we can assume that the "x" is neglible compared to 0.100 M, therefore the equation becomes:

$$1.59 \times 10^{-10} = \frac{x^2}{0.10}$$
$$1.59 \times 10^{-11} = x^2$$
$$\sqrt{1.59 \times 10^{-11}} = \sqrt{x^2}$$
$$x = 3.99 \times 10^{-6}$$

Note that x is < 5% of 0.100, therefore our assumption was correct (we can neglect it in 0.100-x).

pOH =
$$-log(3.99 \times 10^{-6})$$

pOH = 5.40
pH + pOH = pKw
pH = 14.00-5.40
pH = 8.60

- (c) KF dissociates dissociates completely into K⁺ (a group I neutral metal ion) and F⁻ (the conjugate base of the weak acid HF, so F⁻ is a weak base). The solution will be basic.
 - The pH-determining reaction is F⁻+ H₂O ⇌ HF + OH⁻
 - Major species present: H₂O (the solvent), K⁺, F⁻.
 - pH determination:

We first need to calculate the Kb for F^- from the K_a for HF (6.4 x 10⁻⁴)

$$K_w = K_a \times K_b$$

 $Kb = 10^{-14} / 6.4 \times 10^{-4} = 1.56 \times 10^{-11}$

Then,

	F⁻ ≠	HF	+ OH ⁻
ı	0.100	0	~0
С	-X	+ <i>x</i>	+x
Е	0.100- <i>x</i>	Х	х

$$Kb = \frac{[F -][OH^{-}]}{[HF]}$$

$$1.56 \times 10^{-11} = \frac{[x][x]}{[0.10 - x]}$$

Given the very small value for Kb, we can assume that the "x" is neglible compared to 0.100 M, therefore the equation becomes:

$$1.56 \times 10^{-11} = \frac{x^2}{0.10}$$
$$1.56 \times 10^{-12} = x^2$$
$$\sqrt{1.56 \times 10^{-12}} = \sqrt{x^2}$$
$$x = 1.25 \times 10^{-6}$$

Note that x is < 5% of 0.100, therefore our assumption was correct (we can neglect it in 0.100-x).

pOH =
$$-log(1.25 \times 10^{-6})$$

pOH = 5.90
pH + pOH = pKw
pH = 14.00-5.90
pH = 8.10

- (d) CH₃NH₃Cl dissociates completely into CH₃NH₃⁺ (the conjugate acid of a weak base) and Cl⁻ (the conjugate base of a very strong acid, so Cl⁻ is essentially pH neutral). The solution will be acidic.

 - Major species present: H₂O (the solvent), CH₃NH₃⁺, Cl⁻.

• pH determination:

	CH₃NH₃⁺ ⇌	CH₃NH₂	+ H ⁺
ı	0.100	0	~0
С	-X	+ <i>x</i>	+ <i>x</i>
Е	0.100- <i>x</i>	Х	Х

We first need to calculate the Ka for CH₃NH₃⁺ from the K_b for CH₃NH₂ (4.4 x 10⁻⁴)

$$K_w = K_a \times K_b$$
 $Ka = 10^{-14} / 4.4 \times 10^{-4} = 2.27 \times 10^{-11}$

Then,

$$Ka = \frac{[CH_3NH_2][H^+]}{[CH_3NH_3^+]}$$
$$2.27 \times 10^{-1} = \frac{[x][x]}{[0.10 - x]}$$

Given the very small value for Ka, we can assume that the "x" is neglible compared to 0.100 M, therefore the equation becomes:

$$2.27 \times 10^{-11} = \frac{x^2}{0.10}$$
$$2.27 \times 10^{-12} = x^2$$
$$\sqrt{2.27 \times 10^{-12}} = \sqrt{x^2}$$
$$x = 1.51 \times 10^{-6}$$

Note that x is < 5% of 0.100, therefore our assumption was correct (we can neglect it in 0.100-x).

pH =
$$-\log(1.51 \times 10^{-6})$$

pH = 5.82

- (e) NaCN dissociates dissociates completely into Na⁺ (a group I neutral metal ion) and CN⁻ (the conjugate base of the weak acid HCN, so CN⁻ is a weak base). The solution will be basic.
 - The pH-determining reaction is CN⁻+ H₂O

 HCN + OH⁻
 - Major species present: H₂O (the solvent), Na⁺, CN⁻.
 - pH determination:

We first need to calculate the Kb for CN⁻ from the K_a for HCN (4.9 x 10⁻¹⁰)

$$K_w = K_a \times K_b$$

 $Kb = 10^{-14} / 4.9 \times 10^{-10} = 2.04 \times 10^{-5}$

Then,

	CN⁻⇌	HCN	+ OH ⁻
I	0.100	0	~0
С	-x	+ <i>x</i>	+ <i>x</i>
Е	0.100- <i>x</i>	Х	Х

$$Kb = \frac{[CN -][OH^{-}]}{[HCN]}$$

$$2.04 \times 10^{-5} = \frac{[x][x]}{[0.10 - x]}$$

Given the very small value for Kb, we can assume that the "x" is neglible compared to 0.100 M, therefore the equation becomes:

$$2.04 \times 10^{-5} = \frac{x^2}{0.10}$$
$$2.04 \times 10^{-6} = x^2$$
$$\sqrt{2.04 \times 10^{-6}} = \sqrt{x^2}$$
$$x = 1.43 \times 10^{-3}$$

Note that x is < 5% of 0.100, therefore our assumption was correct (we can neglect it in 0.100-x).

pOH =
$$-log(1.43 \times 10^{-3})$$

pOH = 2.84
pH + pOH = pKw
pH = $14.00-2.84$
pH = 11.16

Novocaine, $C_{13}H_{21}O_2N_2Cl$, is the salt of the base procaine and hydrochloric acid. The ionization constant for procaine is 7×10^{-6} . Is a solution of novocaine acidic or basic? What are $[H_3O^+]$, $[OH^-]$, and pH of a 2.0% solution by mass of novocaine, assuming that the density of the solution is 1.0 g/mL.

Solution

Using the abbreviation Pc for $C_{13}H_{20}O_2N_2$ (procaine), the formula for novocaine is PcHCl, which ionizes to form PcH $^+$ and Cl $^-$. The molar mass of novocaine is 272.774 g/mol. For convenience, start with 1.00 L of a 2.0% solution by mass:

$$1.00 \times 10^{3} \text{ cm}^{3} \times 1.0 \text{ g cm}^{-3} = 1.00 \times 10^{3} \text{ g}$$

$$\frac{2.0}{100} \times 1.00 \times 10^{3} \text{ g} = 20 \text{ g novocaine}$$

$$= \frac{20 \text{ g}}{272.774 \text{ g mol}^{-1}}$$
 = 0.073 mol

In exactly 1 L, there is 0.073 M. The cation reacts with water:

$$PcH^{+}(aq) + H_{2}O(l) \rightleftharpoons Pc(aq) + H_{3}O^{+}(aq)$$
 $K_{a} = \frac{K_{w}}{K_{b}} = \frac{1.0 \times 10^{-1}}{7 \times 10^{-6}} = 1.4 \times 10^{-9}$

It is convenient to set up a table of concentrations:

	$[C_{13}H_{21}O_2N_2H^{\dagger}]$ or $[PcH^{\dagger}]$	[H ₃ O ⁺]	[C ₁₃ H ₂₁ O ₂ N ₂] or [Pc]
Initial concentration (M)	0.073	0	0
Change (M)	-x	+x	+x
Equilibrium (M)	0.073 – <i>x</i>	х	х

$$1.4 \times 10^{-9} = \frac{[Pc][H_3 O^+]}{[PcH^+]} = \frac{x^2}{0.073}$$

The change x compared with 0.073 M is small and, therefore, neglected:

$$[H_3O^+] = x = 1.0 \times 10^{-5} = 1 \times 10^{-5} M$$

The solution is acidic. The hydroxide ion concentration is:

[OH⁻] =
$$\frac{K_w}{[H_3O^+]}$$
 = $\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}}$ = $1 \times 10^{-9} M$
pH = $-\log(1.0 \times 10^{-5})$ = $5.00 = 5.0$