Acid-Base Equilibria

Section 92 - pH and pOH

92-1 What are the pH and pOH of a solution of 2.0 M HCl? Recall that HCl is a strong acid, and ionizes completely in aqueous solution.

Solution

HCl is a strong acid that undergoes complete ionization in pure water.

$$[H_3O^+]$$
 = molarity of HCl = 2.0 M
pH = $-\log[H_3O^+]$ = $-\log(2.0)$ = -0.30
pOH = 14.00 - pH = 14.00 - (-0.30) = 14.30

- 92-2 Calculate the pH and the pOH of each of the following solutions at 25 °C. (Note that these substances are strong acids, and so are completely ionized in aqueous solution).
 - (a) 0.200 M HCl
 - (b) 0.350 M HNO₃

Solution

pH =
$$-\log[H_3O^+]$$
, pOH = $-\log[OH^-]$;

(a) Hydrochloric acid is a strong acid; therefore, the hydronium ion concentration is the same as the molar concentration of HCl (since there is a 1:1 ratio in the stoichiometry of the formula).

```
pH = -\log(0.200) = -(-0.699) = 0.699;
pOH = 14.00 - pH = 14.00 - 0.699 = 13.30;
```

- (b) Nitric acid is a strong acid; therefore, the hydronium ion concentration is the same as the molar concentration of HNO₃ (since there is a 1:1 ratio in the stoichiometry of the formula). $pH = -\log(0.350) = -(-0.455) = 0.455$; pOH = 14.00 pH = 14.00 0.455 = 13.54.
- 92-3 Calculate the pH and the pOH of each of the following solutions at 25 °C. (Note that these substances are strong bases, and so are completely ionized in aqueous solution.)
 - (a) 0.0143 M NaOH
 - (b) 0.0031 M Ca(OH)₂

Solution

pH =
$$-\log[H_3O^+]$$
, pOH = $-\log[OH^-]$;

(b) NaOH is a strong base that is completely ionized in dilute solution. The stoichiometry for the number of hydroxide ions formed per NaOH is 1:1. Therefore, since $[OH^-] = 0.0143 M$, pOH = -log(0.0143) = -(-1.8447) = 1.845;

Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem Section 92-pH and pOH: Questions and Worked Answers

$$pH = 14.00 - pOH = 14.00 - 1.845 = 12.16$$
;

(b) Calcium hydroxide is also a strong base, but in this case the stoichiometry is such that two hydroxides are formed when one $Ca(OH)_2$ dissociates in water. Thus, $[OH^-] = 2(0.0031) = 0.0062 M$;

```
pOH = -log(0.0062) = -(-2.208) = 2.21;

pH = 14.00 - 2.208 = 11.792 = 11.79
```

- 92-4 Calculate the pH and the pOH of each of the following aqueous solutions at 25 °C.
 - (a) 0.000259 M HClO₄
 - (b) 0.21 M NaOH
 - (c) $0.000071 M Ba(OH)_2$
 - (d) 2.5 M KOH

Solution

- (a) pH = $-\log(0.000259) = -(-3.5867) = 3.587$; pOH = 14.0000 3.5867 = 10.4133 = 10.413; Solution is acidic.
- (b) pOH = $-\log(0.21) = -(-0.678) = 0.68$; pH = 14.000 - 0.678 = 13.322 = 13.32;

Solutions is basic.

- (c) Note the formula is for Ba(OH)₂. Thus $[OH^-] = 2(0.000071) = 0.000142 M$; pOH = -log(0.000142) = -(-3.848) = 3.85; pH = 14.000 3.848 = 10.152 = 10.15; Solution is basic.
- (d) pOH = $-\log(2.5) = -(0.398) = -0.40$; pH = 14.000 - (-0.398) = 14.398 = 14.4Solution is basic.
- 92-5 What is the [H⁺] and [OH⁻] in each of the following at 25 °C? Are the solutions acidic, basic or neutral?
 - (a) An aqueous solution at pH 5.67
 - (b) An aqueous solution at pH 12.67
 - (c) An aqueous solution at pH = 4.99
 - (d) An aqueous solution at pH 8.62

Solution

Recall that $pH = -log[H^+]$.

(a) pH =
$$-\log[H^+]$$

5.67 = $-\log[H^+]$
 $\log [H^+] = -5.67$
 $[H^+] = 10^{-5.67} = 2.13 \times 10^{-6} M$

$$pOH = 14.00 - 5.67 = 8.33$$

Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem Section 92-pH and pOH: Questions and Worked Answers

$$[OH-] = 10^{-8.33} = 4.68 \times 10^{-9} M$$
 Solution is acidic.

$$[H^+] = 10^{-12.7} = 2.1 \times 10^{-13} M$$

Solution is basic.

(c)
$$pH = -log[H^+]$$

$$4.99 = -log[H^+]$$

$$log[H^+] = -4.99$$

$$[H^+] = 10^{-4.99} = 1.02 \times 10^{-5} M$$

$$pOH = 14.00 - 4.99 = 9.01$$

$$[OH-] = 10^{-9.01} = 9.77 \times 10^{-10} M$$

Solution is acidic.

(d) $pH = -log[H^+]$

$$8.62 = -log[H^+]$$

$$log[H^+] = -8.62$$

$$[H^+] = 10^{-8.62} = 2.40 \times 10^{-9} M$$

$$pOH = 14.00 - 8.62 = 5.38$$

$$[OH-] = 10^{-5.38} = 4.17 \times 10^{-6} M$$

Solution is basic.

92-6 Explain why a sample of pure water at 40 °C is neutral even though $[H_3O^+]$ = 1.7 × 10⁻⁷ M. K_w is 2.910×10^{-14} at 40 °C.

Solution

In a neutral solution $[H_3O^+]$ = $[OH^-]$. At 40 °C, $[H_3O^+]$ = $[OH^-]$ = $(2.9 \ 10^{-14})^{1/2}$ = 1.7 $\times \ 10^{-7}$.

92-7 What are the hydronium and hydroxide ion concentrations in a solution whose pH is 6.52?

Solution

$$[H_3O^+] = 10^{-6.52} = 3.0 \times 10^{-7} M$$
; pOH = 14.00 - pH; pOH = 14.00 - 6.52 = 7.48; [OH⁻] = $10^{-7.48} = 3.3 \times 10^{-8} M$

92-8 The hydronium ion concentration in a sample of rainwater is found to be $1.7 \times 10^{-6} \, M$ at 25 °C. What is the concentration of hydroxide ions in the rainwater?

Solution

Introductory Chemistry CC 4.0 License, bit.ly/Intro_Chem Section 92-pH and pOH: Questions and Worked Answers

$$[H_3O^+]$$
 [OH⁻] = 1.0 × 10⁻¹⁴; [1.7 × 10⁻⁶][OH⁻] = 1.0 × 10⁻¹⁴;
 $[OH^-] = \frac{1.00 \times 10^{-1}}{1.7 \times 10^{-6}} = 5.9 \times 10^{-9} M$

92-9 The hydroxide ion concentration in household ammonia is $3.2 \times 10^{-3} M$ at 25 °C. What is the concentration of hydronium ions in the solution?

Solution

$$[H_3O^+]$$
 [OH⁻] = 1.0 × 10⁻¹⁴; $[H_3O^+]$ [3.2 × 10⁻³] = 1.0 × 10⁻¹⁴; $[OH^-]$ = $\frac{1.00 \times 10^{-14}}{3.2 \times 10^{-3}}$ = 3.1 × 10⁻¹² M

92-10 The ionization constant for water ($K_{\rm w}$) is 2.9 × 10⁻¹⁴ at 40 °C. Calculate [H_3O^+], [OH⁻], pH, and pOH for pure water at 40 °C.

Solution

$$K_{\rm w} = [H_3 O^+] [{\rm OH^-}] = 2.9 \times 10^{-14}$$

$$[H_3 O^+] = [{\rm OH^-}] = \sqrt{2.9 \times 10^{-14}} = 1.70 \times 10^{-7} = 1.7 \times 10^{-7} \, M$$
 pH = pOH = $-\log(1.70 \times 10^{-7}) = 6.769 = 6.77$

92-11 The ionization constant for water (K_w) is 9.311 × 10⁻¹⁴ at 60 °C. Calculate [H_3O^+], [OH⁻], pH, and pOH for pure water at 60 °C.

Solution

For water,
$$[H_3O^+]$$
 = $[OH^-]$ = x .
 K_W = 9.311×10^{-14} = x^2
 x = $3.051 \times 10^{-7}M$ = $[H_3O^+]$ = $[OH^-]$
pH = $-\log 3.051 \times 10^{-7}$ = $-(-6.5156)$ = 6.5156
pOH = pH = 6.5156